Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1164935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229190

RESUMO

Genomic selection has recently become an established part of breeding strategies in cereals. However, a limitation of linear genomic prediction models for complex traits such as yield is that these are unable to accommodate Genotype by Environment effects, which are commonly observed over trials on multiple locations. In this study, we investigated how this environmental variation can be captured by the collection of a large number of phenomic markers using high-throughput field phenotyping and whether it can increase GS prediction accuracy. For this purpose, 44 winter wheat (Triticum aestivum L.) elite populations, comprising 2,994 lines, were grown on two sites over 2 years, to approximate the size of trials in a practical breeding programme. At various growth stages, remote sensing data from multi- and hyperspectral cameras, as well as traditional ground-based visual crop assessment scores, were collected with approximately 100 different data variables collected per plot. The predictive power for grain yield was tested for the various data types, with or without genome-wide marker data sets. Models using phenomic traits alone had a greater predictive value (R2 = 0.39-0.47) than genomic data (approximately R2 = 0.1). The average improvement in predictive power by combining trait and marker data was 6%-12% over the best phenomic-only model, and performed best when data from one full location was used to predict the yield on an entire second location. The results suggest that genetic gain in breeding programmes can be increased by utilisation of large numbers of phenotypic variables using remote sensing in field trials, although at what stage of the breeding cycle phenomic selection could be most profitably applied remains to be answered.

2.
Theor Appl Genet ; 127(12): 2619-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273129

RESUMO

KEY MESSAGE: We show the application of association mapping and genomic selection for key breeding targets using a large panel of elite winter wheat varieties and a large volume of agronomic data. The heightening urgency to increase wheat production in line with the needs of a growing population, and in the face of climatic uncertainty, mean new approaches, including association mapping (AM) and genomic selection (GS) need to be validated and applied in wheat breeding. Key adaptive responses are the cornerstone of regional breeding. There is evidence that new ideotypes for long-standing traits such as flowering time may be required. In order to detect targets for future marker-assisted improvement and validate the practical application of GS for wheat breeding we genotyped 376 elite wheat varieties with 3,046 DArT, single nucleotide polymorphism and gene markers and measured seven traits in replicated yield trials over 2 years in France, Germany and the UK. The scale of the phenotyping exceeds the breadth of previous AM and GS studies in these key economic wheat production regions of Northern Europe. Mixed-linear modelling (MLM) detected significant marker-trait associations across and within regions. Genomic prediction using elastic net gave low to high prediction accuracies depending on the trait, and could be experimentally increased by modifying the constituents of the training population (TP). We also tested the use of differentially penalised regression to integrate candidate gene and genome-wide markers to predict traits, demonstrating the validity and simplicity of this approach. Overall, our results suggest that whilst AM offers potential for application in both research and breeding, GS represents an exciting opportunity to select key traits, and that optimisation of the TP is crucial to its successful implementation.


Assuntos
Mapeamento Cromossômico , Genômica/métodos , Triticum/genética , Cruzamento , França , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Genótipo , Alemanha , Desequilíbrio de Ligação , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA